
WHITE PAPER

1
Cybersecurity

IoT Security
Top 20 Design Principles

WHITE PAPER

1
Cybersecurity

In a competitive market, it is important to find a differentiator for your products, and often a competitive advantage is sought
through adding smart features and connecting products to business networks or the internet. However, as new features and
connections are added, the security of such systems is often degraded.

Additionally, the security of connected products is increasingly becoming a matter of organizational and even national interest.
Malware that can take control and subvert the operations of connected systems has been used to launch some of the largest
attacks ever seen on the internet. The connected nature of these systems also means security must be considered for any apps
that run on separate systems, such as cloud services and consumer phones.

Of course, fitting security into increasingly tight time and budget requirements for product development can be difficult.
Fortunately, there are some simple steps that can be taken to increase the security of connected systems. These outlined steps
are organized with the most important requirements first, and it is recommended that these are addressed as the initial priority
for all aspects within a system – product, system, cloud and app.

Executive
Summary

2
Cybersecurity

1
Provide a manual override for any safety-critical
operations

Advanced features are great when they work. However, sometimes these
features fail – often through no fault of the system itself. The local network
of the customer can be poorly configured, or their internet connection may
become interrupted. In such cases it is important that any lack of functionality
this causes does not result in a safety problem for the end user. Examples may
be providing a physical key back-up for a smart door lock or a manual override
and safety-limiting feature on an IoT thermostat.

2
Ensure parameters which could compromise the
system (secret or private cryptographic keys,
passwords, etc.) are unique per device

Passwords that are used for security-sensitive features should be unique per
device. A password that everyone knows is not much of a password. There
are simple solutions for this, however. For example, secure passwords can be
randomly generated and printed on the device’s serial number sticker. If the
device is not going to be easily accessible during normal operation, consider
providing such a sticker inside the manual or quick start guide, which can be
taken out and put somewhere the user will not forget. Of course, there will
always be scenarios where customers forget or lose passwords, so system
recovery methods, such as a physical reset button which enters a password
recovery mode when pressed, should also be securely implemented.

Any secret (symmetric) or private (asymmetric) cryptographic keys should also
be managed as unique for each device or application. There are a few ways in
which cryptographic keys can be determined even when they are apparently
being stored and managed inside a secure device. Often these methods are
not worthwhile for extracting keys from a single device, but if the same key
is used in thousands of devices, the economics of such an attack change
considerably.

3
Test the system to be sure it is free of known,
exploitable vulnerabilities prior to release

The software in connected devices, applications and cloud services are often
comprised of various software components, including existing software
(such as open-source code and third-party libraries) as well as commonly
used protocols and functions (such as databases). Each of these software
components may have its own vulnerabilities, and it is important that a check
is made for known vulnerabilities before releasing any system.

This can be achieved through various software utilities and scanning services
for cloud-based systems. In the Payment Card Industry (PCI), for example,
look for vendors who have passed the requirements from ASV, which has done
a good job of providing a minimum validation of scanning vendors.

2

Top five priorities

WHITE PAPER

3
Cybersecurity

4
Allow for software updates and ensure they are cryptographically authenticated
prior to installation and execution. Implement anti-rollback features to prevent the
installation of previous vulnerable versions of firmware

No matter how well software is designed or tested, there will always be bugs and vulnerabilities that are missed or discovered
after the product ships. It is important to allow for the update of the software to ensure that it can be patched when any
such bugs are found. However, if this is not carefully implemented it can lead to additional vulnerabilities where a bad actor
can install their own software into the device to prevent its normal operation.

To prevent this, software updates should be cryptographically authenticated. This is often achieved through the use of a
digital signature on the system firmware image, which can be checked by the original firmware (or bootloader of the device)
prior to installation. Using a digital signature based on a public key algorithm (such as RSA or DSA) ensures the devices
themselves do not need the part of the key (private or secret) that is used to generate the authentication data.

If a symmetric key system is used instead, such as a (H)MAC, this secret key is needed in each device. This means that access
to the firmware in one device provides the ability to create valid firmware signatures for any device (unless there is a unique
key per device, which is not feasible for IoT systems). So, public key cryptography is strongly recommended.

It is also important to include methods to prevent a bad actor from installing a previous version of firmware, which would
reinstate any otherwise patched vulnerabilities. This can be done by including an increasing number (monotonic) in each
firmware release that is checked before install to ensure that the firmware version attempting to be installed is not older than
the current version in the device.

5
Use industry standard security protocols with best practice defaults for any remote
or wireless connections and authentication of connections to management services

It is vital to protect communications which may be subject to interception or modification using an industry standard security
protocol such as TLS or WPA2. Additionally, the exact use of the security protocol is also important – for example, it is possible
to use TLS and still be insecure if it is not configured correctly. These protocols allow for the authentication of connections,
but only when implemented properly. Therefore, validation of certificates or certificate pinning should be used to ensure that
the connection is both secure and private.

Use the latest version of the protocol and software library, and monitor any changes so patches can be provided when
problems are fixed. The use of the security protocol should cover all communications where possible, regardless if they are
security-related or not. This will make compromise of the system more difficult, as any bad actor must first compromise the
security protocol before gaining access to try to compromise the device.

This requirement also covers the use of wireless protocols, where the use of security protocols such as WPA2 is equally
important. It may be necessary to allow for customers to disable security features, but consider providing them guidance on
why this is not recommended.

WHITE PAPER

4
Cybersecurity

6 Do not store passwords in clear text

It is common knowledge that people tend to reuse passwords, so a password extracted from a single compromised
system may be useable on other systems, accounts and online services. Instead of clear text, passwords should be stored
using a “one-way,” and computationally intensive, algorithm such as BCrypt.

For any cloud environments, this item should be considered part of the top five requirements.

7
Authenticate remote access and system management interfaces with session and
time-out limits

Access into a system, whether to a device from outside the local network or into a cloud system, should be
authenticated to prevent access by unauthorized parties. For back-end or cloud-based systems, consider implementing
two-factor security measures such as those provided by FIDO-compliant tokens and software. SMS-based One-
Time Passwords may be implemented, but these are under increasing attack and newer, more secure methods are
recommended.

For connection into local networks from an external system, consider VPN connections or routing data through a TLS
connection tunnel that can provide authentication (and where certificate validation/pinning is performed as required).
Local connections may require only a password, but may also provide authentication through physical proximity, such as
a Bluetooth/NFC connection or through a physical button that must be pressed to access the service. If localized wireless
is used, ensure security best practices are followed.

Debugging interfaces, such as JTAG and in-circuit emulation, should always be disabled on production devices. Although
accessing such interfaces requires local physical access, enabling them greatly simplifies the work of a bad actor in
developing attacks.

These management services may have a range of functions, from turning a camera to point in a different direction
to loading new certificates, firmware or other security-related features. If a device has multiple features that can be
accessed through remote administration features, consider providing different levels of authentication so it is possible to
isolate security-related features from user features.

In addition, provide an absolute limit on the time during which any administration features can be accessed during one
session. This prevents people from forgetting that they have left these features on.

Best of the rest checklist

WHITE PAPER

5
Cybersecurity

8 Ensure cryptographic key methodologies generate sufficient randomness

Generating good random numbers is actually very hard, and
the use of poor random numbers has been the source of many
vulnerabilities. The root cause usually is based around two
issues: first, computing systems are deterministic, meaning the
same program, given the same inputs, will produce the same
output every time; second, we as human beings are not very
good at spotting a lack of randomness.

Input from an embedded device cannot be solely relied on to
produce good random numbers. It is often best to take input
from various sources. One of these may be a standard random
function, but other sources also include the least significant bits
of an A/D input, network traffic timing, hard-disk seek timing,
millisecond data from a real-time clock source, user input timing,
etc. These can then be combined and provided as a seed to a
pseudo-random number generator, such as those outlined in
NIST SP 800-90A.

Cryptographic keys should not be directly generated from
passwords. It is better to use the password to enable access
to the use of a key generated from a strong random number
process.

9
Detail all customer data – including audio, video and personal details – that can be exported
to cloud systems or third parties. Provide an opt-in for such collection

Many systems provide advanced features for processing in a cloud environment. However, not all consumers are aware of the collection
and export of this data, and privacy concerns may exceed the customer desire for provided features. It is important that consumers
are given control of the data they provide outside their own networks through clear disclosure and an opt-in rather than a default-on
process.

10
Only use industry standard cryptographic algorithms and modes of operation for any
security protocol (such as firmware authenticity checking)

Cryptographic algorithms are complex, and these days it is reasonable to say that there is no one person who is able to say that any
particular algorithm is secure. The only way to have any confidence in an algorithm is to subject it to study from a host of experts over
many years. Even then, new research and findings may come along and reveal flaws previously unfound.

Therefore, it is strongly recommended that only cryptographic algorithms, key lengths and modes of operation that are research-verified,
and generally accepted to be secure, are used. A great reference for this is NIST SP 800 57, which basically defines Triple DES, AES, RSA and
Elliptic Curve Cryptography (ECC) as the only algorithms for use.

The mode of operation, or the way in which the cryptographic is actually used to encrypt the data or provide authentication, is also
important. It can be easily overlooked that using a simple mode of operation such as Electronic Code Book (ECB) can actually expose
patterns in the plaintext data and may not achieve the security that is intended when implementing the encryption.

WHITE PAPER

6
Cybersecurity

11
Provide ability for users to enable
on-demand features they may not want or
only use intermittently

All software has bugs, and many of these bugs expose potential
security vulnerabilities. The more software a product has, the
more bugs it is likely to have. Of course, these bugs can be
minimized through testing, patching and other methods, but
many bugs will remain unfound and unpatched until an exploit is
released. In contrast to this, many products rely on an extensive
feature-set to differentiate themselves in a commercially
aggressive market. To balance these conflicting requirements, it
is ideal to have some of the more advanced features disabled by
default so a system can remain secure even if an exploit is found.

For example, remote access, wireless pairing and advanced
functions (email, printer interfaces, etc.) may be provided but
disabled by default and provided with a timed access feature so
the customer can enable the feature only for a certain period.

12
Implement a power-on self-test that
validates core functions and integrity of
firmware prior to execution. Implement a
cryptographic chain of trust from the
hardware during boot where possible

Ideally firmware should be validated on each boot to ensure it
has not been altered since being installed. This can be achieved
when there is a signature across all firmware anyway, which may
be the case if the system runs a simple function executive, but is
significantly more difficult when it is a complex operating system
(OS), such as Linux. Validating all of the different files, scripts, etc.
that go into ensuring a complex OS runs correctly is complicated.
Potential solutions include the validation of the device bootloader
(from a hardware root of trust, which requires support in the
processor being used) and then using that bootloader to validate
an OS image which is unpacked and installed.

Of course, this all takes time. But it is useful to prevent things like
Ransomware which may look to install software that renders a
device inoperative until a ransom amount is paid.

6

WHITE PAPER

7
Cybersecurity

13
Ensure that any system defaults,
such as passwords, certificates or
keys, are forced to be changed
prior to initial operation

System defaults should be avoided where possible,
but such defaults are often necessary. For example,
a default may be required to allow for the boot-
strapping of the system for the first time. This can
be acceptable, but this default value should be
forced to change as part of the overall setup.

Ultimately, defaults should only be considered for
certificates and other such items which may be
required to be present for normal operation, but
must be changed by the user before installation and
operation. This also covers any test values that may
be in the firmware, and these should never be left
in a production system.

14
Ensure error messages or responses
to invalid messages do not expose
sensitive data

When a system is incorrectly accessed, it is
common to return some form of error message to
indicate what error has occurred. Such messages
can easily reveal sensitive information about a
system and must be very carefully implemented.
Consider returning only good/bad indications
from production systems, at least until some
form of debug state is activated (through an
authenticated access, of course). Never return
details of any decrypted data if there is a failure of
some sort, even to note what error has occurred
in the decryption and validation. Simply reject the
connection in such cases.

15
Ensure cryptographic keys are only
used for a single intended purpose

Key management (the way cryptographic keys are
used) is extremely important. The cryptographic
algorithm is only a part of the security. The way
the algorithm is used, and the way the required
cryptographic keys are used, is also vital.

To prevent compromise, it is good practice to use
cryptographic keys for only one purpose. Data
encryption keys should be used only for encrypted
data. Keys used to secure passwords, for example,
should be different. Do not mix keys (or key pairs)
between uses for encryption and authentication.
Each key should have a unique use.

16
Implement least privilege in all
systems

Modern processors often offer different privilege
levels, which include potential access to memory
and other resources. These features can be used
by the software to help secure assets within the
device by ensuring only software with the right
privilege can access them. The interface to the
hardware-level privilege controls of a processor are
often managed by the OS, such as Linux, but they
can also be controlled even if a device does not
use a complex OS (for example, if it uses a simple
function executive, or cut-down RToS, instead).

Whenever possible, keep the use of root or
supervisor-level privileges in embedded systems to
an absolute minimum, and maintain secret data,
such as cryptographic keys, at the highest level of
privilege (hardest to access). Similar rules hold true
for apps and cloud-based systems: keep the use of
elevated privileges to a minimum, and try to isolate
functions as their own user or privilege set.

WHITE PAPER

8
Cybersecurity

17 Implement protections to prevent execution of data memory

Many remote attacks aim to gain execution of
code supplied by the bad actor, which is provided
through a specific vulnerability. It is almost
impossible to avoid all vulnerabilities in code, but
mitigating the potential for remote code execution
through coding vulnerabilities is possible through a
number of different methods.

Many processors provide “no-execute” functions,
which can mark specific areas of memory that
cannot be used to reference directly-executable
code. Alternatively, some processors may even
provide entirely different code and data memory
segments, which makes direct code injection
attacks impossible (although other types of attacks
may still be performed).

In addition to direct hardware protections, there
are also other protections that can be applied at
the software level. Some of these can be provided
by the OS itself and some may be applied through
compiler settings when creating the object code to
load into the device.

Determine what protections are possible on the
various components of any system and implement
as many as technically and operationally feasible.

8

WHITE PAPER

9
Cybersecurity

18
Do not allow direct execution of
externally-provided commands, scripts
or other parameters that are not within
the defined functions of devices

In addition to direct code execution, there are additional
ways a bad actor may gain access to a system if there are
other interpreters or execution environments available.
For example, a system may allow for non-native code
to be executed, such as JavaScript, which can then lead
to potential vulnerabilities. While this does not mean
it is always necessary to disable things like JavaScript
completely, it is worth understanding the system’s need
for this type of functionality. If it is included, it will often
require more complex security solutions to maintain the
overall security posture of the system.

19
Create and compile firmware for devices
so that it contains only code and systems
required for the defined functions.
Always remove/disable debug and
development features in devices when
creating production code

The larger the body of code, the greater the chance of
undiscovered security flaws. Therefore, it is prudent to
remove as much code as possible to limit the chance that
a flaw discovered after shipping the product will require
patching or other mitigations. This includes code that may
not be normally executed; even if the code is not used,
having it within the device can lead to security problems
down the road.

For similar reasons, it is essential to remove debug and
development code from the device prior to shipping. This
is often done with isolating “ifdef” statements, which
can automatically remove such features during compile
time. Although it is understandable to want features in
the code in case there are problems in production, it is
often more likely that such features will become a source
of vulnerability as they provide access and information
that would not normally be provided in the end-user
environment.

WHITE PAPER

10
Cybersecurity

20
Implement a vulnerability management program to regularly monitor and address
security flaws in the product prior to release and through end-of-life. Include a
process to distribute patches to customers and keep them informed

Security is a moving target, and no system will ever be 100% secure. As new vulnerabilities and attack methods are
released, it is important to have a program to ensure that systems – both new and existing – are not vulnerable to these
security flaws. This is only possible when there is a management-endorsed and enforced program to ensure ongoing
monitoring and updates of system security.

The ability to install patches into systems is of no value if the patches are not created and made available for the customer
systems to install.

10

To learn more about UL’s Cybersecurity Services,
visit UL.com/cybersecurity or email: ULCyber@ul.com

WHITE PAPER

11
Cybersecurity

CT0119

UL.com/cybersecurity

© 2019 UL LLC. All rights reserved. This white paper may not be copied or
distributed without permission. It is provided for general information purposes

only and is not intended to convey legal or other professional advice.

