Electronically Controlled and Electronically Protected Motors
Information for motor manufacturers

The foundation
For the past hundred or so years, there have been a few standard variations of motor design. These included the various “flavors” of AC induction motors and a few “flavors” of brushed motors and that was, by and large, it. Over the last hundred years, the materials changed some and the design and fabrication became incrementally more sophisticated but, by and large, the designs were well established.

The last five years has seen a rapid growth in the prevalence of motors that make use of electronics for control (normal operation) or for overtemperature protection (abnormal operation) or both. The most now ubiquitous of these is the electronically commutated motor (ECM). Indeed, electronics has enabled motor design, fabrication and operating efficiency that was previously only dreamed of. In fact, many in the industry are predicting the eventual, if not imminent, demise of conventional induction and brushed motors.

Of course, this doesn’t come without challenges. After all, over the past 100 years, how a capacitor starts a motor or how a thermal motor protector (TMP) operates to limit overtemperatures have been well understood. Today, how a Hall effect sensor and a set of isolated gate bi-polar transistors (IGBTs) combine to turn a rotor or how a combination of software and hardware combine to limit motor overtemperature is certainly less universally understood.

UL has published its new family of motor Standards partly to address these challenges. Though it is well beyond the scope of this single paper to completely address the implications of this new, emerging and very much still evolving, technology on motor safety, let us address the fundamentals.

First, let us define two basic terms as these definitions are found in UL 1004-1.

1. Operating control — A device or circuit the operation of which starts or regulates the rotating machine during normal operation.

2. Protective control — A device or circuit the operation of which is intended to prevent a hazardous situation during abnormal operation of the machine or equipment. In the context of this Standard, a protective control is one that is relied upon to provide overtemperature protection for a rotating machine.

So we consider that electronic circuits used in motors can perform two broad functions; operation and protection. These two different types of circuits are evaluated and tested in two very different ways.

Operating circuits are evaluated and tested to determine whether or not, under normal conditions of use, the circuit itself will present a risk of fire or electric shock. In contrast, a protective control is both evaluated and tested to appraise this basic level of safety and additionally is evaluated for its functional safety (or ability to provide safety functionality).

Functional safety is a term that we hear a lot these days. Most of UL’s evaluations involve the first-described basic level of safety. For example, when UL evaluates and tests a toaster, we are concerned that it not cause a fire and that it not present a risk of electric shock. We don’t much care about the quality of toast that it makes. Surprisingly however, UL has evaluated functional safety of certain
products for over a hundred years. Fuses for example must not only not present a risk of fire and/or shock, they are also very carefully evaluated and tested to ensure that they will consistently and predictably open under prescribed conditions of overcurrent.

It is in this fashion that motor overtemperature protective circuits are evaluated. These circuits are evaluated and tested with the motor to ensure that under all normal and reasonably anticipated abnormal conditions of motor operation, the circuit can be relied upon to limit motor winding temperatures to acceptable levels.

How do we do this? Evaluation of electronically controlled and electronically protected motors is, by necessity a multi-disciplinary task (much more about this later). It involves the very same motor safety engineers that you’ve become accustomed to and worked with these many years as well as control engineers and, in some cases, software engineers. The motor engineers, of course, work from the same UL 1004 Standards that we’re familiar with. The control engineers work from an extensive Standard called UL 60730-1, that can be quite intimidating. This 300 plus page monster defies casual reading (or understanding for that matter). The reason is that UL 60730-1 is used to evaluate and test all manner of controls not just motor controls and protective circuits.

The key to navigating and understanding UL 60730-1 is to be found in Table 7.2. You see, UL 60730-1, like its IEC progenitor, is a Standard of declarations. That is, the Standard provides the means to evaluate declarations made by the manufacturer. In and of itself, it is not prescriptive. The "prescriptions" for how UL 60730-1 is applied to motor controls and protective circuits is to be found quite naturally in the motor Standards.

If a circuit is presented as a motor operating (not protective) circuit, the minimum performance levels or how the circuit must be evaluated to comply with the motor requirements are found in Table 7.1, the Motor Control Correlation Table of UL 1004-1. This Table prescribes 11 conditions that correlate to Table 7.2 in UL 60730-1. This then serves as the marching orders or recipe that the control engineers must follow to evaluate a motor operating control.

If the circuit is presented as a protective control, a similar Table, Table 29A.1 is provided in UL 1004-7, UL’s Standard for Electronically Protected Motors. These two tables are the Rosetta Stone, if you will, for decoding UL 60730-1 as it applies to motors.

Let’s not test and evaluate simply for the sake of testing and evaluating

There are some very basic and fundamental, yet profound in application, clauses to be found in the motor Standards that apply to electronically controlled and electronically protected motors.

Let’s consider a few examples.

1. UL 1004-1, the general requirements for all Rotating Machinery now contains two very simple sentences:

 1. A risk of fire is considered to exist if the open-circuit voltage between any two points is equal to or greater than 2500 volts peak, or if power of more than 15 watts can be delivered into an external resistor connected between the two points.

 2. A risk of electric shock is considered to exist at any part if:

 c. The potential between the part and earth ground or any other simultaneously accessible part is more than 42.4 V peak for alternating current potentials or 60 volts for direct current potentials; and

 d. The continuous current flow through a 1500-ohm resistor connected across the potential exceeds 0.5 mA.

 So what is the point of defining, in quantifiable electrical terms, the risk of fire and electric shock? Very simply, if we can determine, through simple measurement, that the levels of voltage and/or power are below these defined levels, then we can conclude that no risk of fire and/or electric shock exists at that point in the product and thus all of the requirements contained in the Standard that are designed to mitigate those risks may simply not apply.

2. UL 1004-3, the Standard for Thermally Protected Motors, contains these two clauses:

 Motors, provided with an electronic circuit designed to prevent overheating of the motor that are additionally provided with an electromechanical thermal motor protector (TMP), may be evaluated to the requirements of this Standard with the electronic circuit protection functions disabled.

 These motors shall be considered thermally protected motors if the protector is subjected to motor winding current or a motor thermal protection system if the protector is not subjected to
motor winding current. Electronic protection circuits for such motors shall be considered operating controls.

What this means is that if you’ve designed a motor with a very sophisticated electronic protection circuit, perhaps involving a microprocessor and firmware and you’ve redundantly provided a conventional thermal motor protector (TMP), provided that the combination of the motor and TMP meet the requirements of UL 1004-3 for thermally protected motors, then there is no need to verify the safety functionality of the electronic protection circuit or its firmware. In practice, we know that the circuit will, in all likelihood, operate much faster than the TMP but provided that we have demonstrated that we can depend upon the TMP to reliably limit overtemperatures, there is no need to spend the time, money and effort it would take to evaluate and test the electronic circuit to provide the same functionality.

3. The following three sentences are provided in UL 1004-7, Standards for Electronically Protected Motors:

5A.1 The protection scheme or schemes relied upon to provide freedom from motor overheating due to the causes described in 29A.6 a) – 29A6 d) shall be identified and then validated through test and evaluation to the requirements of UL 60730-1.

5A.2 Protection scheme(s) provided but not relied upon to provide freedom from motor overheating shall be disabled during evaluation and testing of the scheme(s) described in 5A.1.

5A.3 The circuitry associated with those scheme(s) described in 5A.2, that are not relied upon to provide freedom from motor overheating, shall only be evaluated as operating circuits not as protective circuits.

Quite simply, these three sentences mean, if a protective control is provided with multiple protection schemes, perhaps, current sensing, rotation sensing, sensing of back EMF, etc. we don’t need to evaluate and test every scheme provided. Remember, our object is simply to prevent motor overheating. If we can get together with the circuit designer and together conclude that we will rely on one scheme to provide overtemperature protection, and that scheme successfully passes the evaluation and testing required, then there is no need to test and evaluate circuits that provide redundant safety functionality.

4. UL 1004-7 provides for the following:

29A.1 With reference to 2.1, all performance testing required by UL 60730-1A on the control is to be performed with the control connected as intended to the motor.

Exception: A motor control shall only need comply with the requirements for operating controls in UL 60730-1, if the motor coil complies with the locked rotor performance criteria of UL 1004-3 with motor control disconnected from the motor coils, and the power supply for the motor control connected directly across a single motor coil or any combination of motor coils connected in parallel.

What does this mean? What it means is that if we are able to demonstrate that with the motor control disconnected, removed from the circuit, and the motor coils simply connected across the circuit power supply, that the motor coils will not exceed the locked rotor temperature limits, then we can reasonably conclude that there is no failure mode of the circuit that would produce overheating of the coils above those limits. Thus, there is no need to evaluate the circuit as a protective control. Rather, the combination of the source impedance of the power supply and the winding impedance of the motor coils combine to limit coil current to levels less than what it would take to overheat the motor windings.

5. UL 1004-1 provides for the following:

The requirements of this Standard and associated parts of this Standard, intended to address the risk of fire do not apply to a motor provided with a metal enclosure in which there are no openings in the enclosure through which molten metal, burning insulation, flaming particles, or other ignited material could fall onto flammable material, or through which a flame could be projected.

What does this mean? This is nothing more than the application of common sense. If there is no risk of fire, due to the design and construction, then any of the requirements or tests intended to evaluate the risk of fire need not apply.

So what is the point in these five examples?

The point is that we have provided alternatives. Just as there isn’t one way to design and build a motor, there is similarly not just one way to evaluate safety. We have provided numerous alternatives just like the five shown here that manufacturers can use to design safety into their products and to avoid unnecessary, costly and
time consuming testing. Our motor and control engineers have seen many, many design variations and are prepared to work collaboratively with you; to think out of the box and apply the principles of hazard based safety engineering (HBSE) to the test and evaluation of the latest technology of electronically controlled and electronically protected motors.

What can you expect from the evaluation, test and certification experience?

So far we’ve simply talked about the nuts and bolts of test and evaluation. Early on we mentioned that each such project is necessarily multi-disciplinary. Indeed, in many cases, we see projects involving a motor, an electronic control or protection circuit, perhaps some processor based firmware, and often the end product that the motor forms a part of (because, increasingly, we see motor controls and protection circuits integrated into appliance controls). Handled badly, this could mean that you would be dealing with 4 different project handlers, 4 different reviewers and perhaps a handful of PDEs thrown in for good measure. Handled badly, this could be quite a confusing and frustrating experience. We have become sophisticated in the art of managing multi-disciplinary projects. What you can expect is that we will bring all of these experts to bear on your project, if necessary, but that it is likely that you will be provided with a single point of contact, a single overall “owner” of your project. Almost always, this will be the engineer “highest up the totem pole”.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the power available at Y-Y less than or equal to 15 watts?</td>
<td>Requirements and tests that address the risk of motor fire do not apply.</td>
</tr>
<tr>
<td>Is the motor metal enclosed?</td>
<td>Requirements and tests that address the risk of motor electric shock do not apply.</td>
</tr>
<tr>
<td>Is the power available at Y-Y less than or equal to 15 watts and the voltage available at Y-Y less than 42.4 volts peak or 60 volts DC?</td>
<td>Schemes not relied upon to provide motor over-temperature protection</td>
</tr>
<tr>
<td>Is the motor provided with a TMP that can be relied upon to prevent over-temperature?</td>
<td>Control tested and evaluated only as an operating control.</td>
</tr>
<tr>
<td>If we remove the control and connect the power supply directly to the motor (X-X to Y-Y), does the motor overheat?</td>
<td>Schemes relied upon to provide motor over-temperature protection</td>
</tr>
<tr>
<td>Does the control have multiple protection schemes?</td>
<td>Control tested and evaluated as a protective control.</td>
</tr>
</tbody>
</table>
Why is this? When a component, such as a motor, is evaluated to become a Recognized Component motor, it is unknown where that motor will wind up. Once it is a Recognized Component, it could become a motor in a vacuum cleaner, a washing machine, a food processor, a portable tool or a medical blood analyzer. Consequently, since the end use is unknown, we cannot rely upon the end product to take on the burden of mitigating some of the risk. For example, all Recognized Component motors are evaluated and tested to ensure that they do not present a risk of electric shock or fire. Consider that in some applications, this may not be necessary at all. If, for example, in a given end product, the motor is completely enclosed and there is no possibility of human contact with the motor or its accessible metal parts, then the simple inaccessibility may suitably mitigate the risk of electric shock. Similarly, if the motor, in the end product, is completely enclosed in a non-combustible enclosure, then the end product may mitigate the risk of fire that is normally addressed by the motor design and construction.

As a result, it makes sense that the project handler for the end product (if the end product is part of the evaluation) look at the big picture and drive the scope of the evaluation and test of the motor to include only what is required to mitigate those risks not addressed by the end product. Similarly, the motor engineer will drive the scope of the control and protective circuit evaluation and test to only address those features that are necessary to provide mitigation of risk. In the end, for projects involving an end product, the end product will generally be Listed, the motor may become an unlisted component of the end product and the control, an unlisted component of the motor. This isn’t rocket science but rather is a reflection of how you designed your product in the first place. Your product was undoubtedly designed so that all of the various components contribute their part in making up the whole. All we are doing is applying that philosophy to the safety evaluation process.

So how do we make this happen; how do we ensure that your product safety evaluation is conducted as efficiently and effectively as possible both from a time and cost standpoint.

1. First let me suggest the worst possible way. The worst possible ways is to design and prototype a product and perhaps even design and fabricate some of the production tooling and then drop the prototype or worse a pre-production sample on “UL’s desk” and state, “Here, certify this.” Let me suggest the obvious. Changes are much more easily and cost effectively made on paper than they are on products or tooling.

2. Remember, UL exists for one purpose only, to work with manufacturers to bring safe products to market. Let me share what our most satisfied and successful customers have learned. They have learned to integrate UL into their product design team and process. Generally, the earlier in the design process that we are brought in, the more successful and time and cost effective the result. Our engineers are not only experienced in UL’s motor Standards but they have ready access to UL colleagues who are experts in the hundreds of components and materials that make up a motor. We routinely collaborate with manufacturer’s design and production engineers to discuss safety requirements, suggest alternatives and propose solutions.

Get us involved early. Let us work together to bring safe products, your products, to market quickly, efficiently and cost effectively. That’s what we’re here for.

About Underwriters Laboratories

UL is an independent product safety certification organization that has been testing products and writing Standards for Safety for more than a century. UL evaluates more than 19,000 types of products, components, materials and systems from more than 66,000 manufacturers each year. In total, there are more than 20 billion UL Marks appearing on products worldwide. UL’s global family of companies and network of service providers includes 68 laboratory, testing and certification facilities serving customers in 102 countries. For more information, visit: http://www.UL.com/newsroom.